Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2295703

RESUMEN

Continuous evaluation of the coronavirus disease 2019 (COVID-19) vaccine effectiveness in hemodialysis (HD) patients is critical in this immunocompromised patient group with higher mortality rates due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The response towards vaccination in HD patients has been studied weeks after their first and second SARS-CoV-2 vaccination dose administration, but no further studies have been developed in a long-term manner, especially including both the humoral and cellular immune response. Longitudinal studies that monitor the immune response to COVID-19 vaccination in individuals undergoing HD are therefore necessary to prioritize vaccination strategies and minimize the pathogenic effects of SARS-CoV-2 in this high-risk group of patients. We followed up HD patients and healthy volunteers (HV) and monitored their humoral and cellular immune response three months after the second (V2+3M) and after the third vaccination dose (V3+3M), taking into consideration previous COVID-19 infections. Our cellular immunity results show that, while HD patients and HV individuals secrete comparable levels of IFN-γ and IL-2 in ex vivo stimulated whole blood at V2+3M in both naïve and COVID-19-recovered individuals, HD patients secrete higher levels of IFN-γ and IL-2 than HV at V3+3M. This is mainly due to a decay in the cellular immune response in HV individuals after the third dose. In contrast, our humoral immunity results show similar IgG binding antibody units (BAU) between HD patients and HV individuals at V3+3M, independently of their previous infection status. Overall, our results indicate that HD patients maintain strong cellular and humoral immune responses after repeated 1273-mRNA SARS-CoV-2 vaccinations over time. The data also highlights significant differences between cellular and humoral immunity after SARS-CoV-2 vaccination, which emphasizes the importance of monitoring both arms of the immune response in the immunocompromised population.

2.
Cross Cultural & Strategic Management ; 30(1):142-165, 2023.
Artículo en Inglés | ProQuest Central | ID: covidwho-2227005

RESUMEN

PurposeThis paper aims to corroborate the importance of university social responsibility (USR) for universities and to establish a rationale for their investment in a strategically implement socially responsible initiatives and programmes and gain returns from such investments. This purpose can be achieved by examining a complex conceptual model connecting USR with many desired student-related outcomes that leverage the university's competitiveness, long sustainability and contribution to the triple bottom line – "people, planet, and profit”.Design/methodology/approachThe authors conducted a cross-country comparative study using quantitative techniques. Their analysis was guided by a holistic conceptual model constructed and experimentally evaluated using obtained primary data. The robustness of the suggested model was evaluated using structural equation modelling with partial least squares.FindingsThe findings validate the hypothesized associations and indicate that adopting USR initiatives increases student satisfaction and alumni loyalty through student-university identification, perceived university image, and service quality. In addition, the cross-country analysis finds no variation in the strength of the connections owing to cultural variations, except for the association between service quality and institution image.Practical implicationsIncorporating USR at the centre of university's strategy not only complements its teaching and research goals but also answers the requirements and expectations of stakeholders, increases competitiveness and assures sustainable performance.Originality/valueThis cross-cultural USR study uses a mix of methods to show that, even though USR is important, until now, its importance has been overlooked.

3.
Futures ; : 103014, 2022.
Artículo en Inglés | ScienceDirect | ID: covidwho-1966573

RESUMEN

Few events have had an impact as the global crisis caused by COVID-19. However, prior to the pandemic, Latin American and Caribbean (LAC) countries already had severe problems in terms of inequality, environmental degradation, and dysfunctional political systems. Added to this are the growing challenges that climate change poses for this highly vulnerable region. This historic turning point represents a new call to consider future studies to re-imagine and reinvent alternative futures for the LAC region. For this paper, we conducted an in-depth qualitative futures study to identify how Latin American and Caribbean countries could build long-term resilience, focusing on adaptability to climate change risks, considering existing sustainable development challenges and the detrimental effects of the COVID-19 pandemic on the economic, environmental, and social aspects. This study's findings provide recommendations for policymakers and decision-makers to achieve sustainable futures for LAC. Finally, it reflects on the value of collective action for a future-proof region.

4.
Lancet ; 398(10295): 121-130, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1915103

RESUMEN

BACKGROUND: To date, no immunological data on COVID-19 heterologous vaccination schedules in humans have been reported. We assessed the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK). METHODS: We did a phase 2, open-label, randomised, controlled trial on adults aged 18-60 years, vaccinated with a single dose of ChAdOx1-S 8-12 weeks before screening, and no history of SARS-CoV-2 infection. Participants were randomly assigned (2:1) to receive either BNT162b2 (0·3 mL) via a single intramuscular injection (intervention group) or continue observation (control group). The primary outcome was 14-day immunogenicity, measured by immunoassays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Antibody functionality was assessed using a pseudovirus neutralisation assay, and cellular immune response using an interferon-γ immunoassay. The safety outcome was 7-day reactogenicity, measured as solicited local and systemic adverse events. The primary analysis included all participants who received at least one dose of BNT162b2 and who had at least one efficacy evaluation after baseline. The safety analysis included all participants who received BNT162b2. This study is registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739), and is ongoing. FINDINGS: Between April 24 and 30, 2021, 676 individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years [SD 9]; 382 [57%] women and 294 [43%] men). 663 (98%) participants (n=441 intervention, n=222 control) completed the study up to day 14. In the intervention group, geometric mean titres of RBD antibodies increased from 71·46 BAU/mL (95% CI 59·84-85·33) at baseline to 7756·68 BAU/mL (7371·53-8161·96) at day 14 (p<0·0001). IgG against trimeric spike protein increased from 98·40 BAU/mL (95% CI 85·69-112·99) to 3684·87 BAU/mL (3429·87-3958·83). The interventional:control ratio was 77·69 (95% CI 59·57-101·32) for RBD protein and 36·41 (29·31-45·23) for trimeric spike protein IgG. Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported. INTERPRETATION: BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile. FUNDING: Instituto de Salud Carlos III. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunización Secundaria , Inmunogenicidad Vacunal/inmunología , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Adolescente , Adulto , Vacuna BNT162 , COVID-19/epidemiología , ChAdOx1 nCoV-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , España/epidemiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
5.
EClinicalMedicine ; 50: 101529, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1914317

RESUMEN

Background: The CombiVacS study was designed to assess immunogenicity and reactogenicity of the heterologous ChAdOx1-S/BNT162b2 combination, and 14-day results showed a strong immune response. The present secondary analysis addresses the evolution of humoral and cellular response up to day 180. Methods: Between April 24 and 30, 2021, 676 adults primed with ChAdOx1-S were enrolled in five hospitals in Spain, and randomised to receive BNT162b2 as second dose (interventional group [IG]) or no vaccine (control group [CG]). Individuals from CG received BNT162b2 as second dose and also on day 28, as planned based on favourable results on day 14. Humoral immunogenicity, measured by immunoassay for SARS-CoV-2 receptor binding domain (RBD), antibody functionality using pseudovirus neutralisation assays for the reference (G614), Alpha, Beta, Delta, and Omicron variants, as well as cellular immune response using interferon-γ and IL-2 immunoassays were assessed at day 28 after BNT162b2 in both groups, at day 90 (planned only in the interventional group) and at day 180 (laboratory data cut-off on Nov 19, 2021). This study was registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739). Findings: In this secondary analysis, 664 individuals (441 from IG and 223 from CG) were included. At day 28 post vaccine, geometric mean titres (GMT) of RBD antibodies were 5616·91 BAU/mL (95% CI 5296·49-5956·71) in the IG and 7298·22 BAU/mL (6739·41-7903·37) in the CG (p < 0·0001). RBD antibodies titres decreased at day 180 (1142·0 BAU/mL [1048·69-1243·62] and 1836·4 BAU/mL [1621·62-2079·62] in the IG and CG, respectively; p < 0·0001). Neutralising antibodies also waned from day 28 to day 180 in both the IG (1429·01 [1220·37-1673·33] and 198·72 [161·54-244·47], respectively) and the CG (1503·28 [1210·71-1866·54] and 295·57 [209·84-416·33], respectively). The lowest variant-specific response was observed against Omicron-and Beta variants, with low proportion of individuals exhibiting specific neutralising antibody titres (NT50) >1:100 at day 180 (19% and 22%, respectively). Interpretation: Titres of RBD antibodies decay over time, similar to homologous regimes. Our findings suggested that delaying administration of the second dose did not have a detrimental effect after vaccination and may have improved the response obtained. Lower neutralisation was observed against Omicron and Beta variants at day 180. Funding: Funded by Instituto de Salud Carlos III (ISCIII).

6.
Nat Biotechnol ; 40(11): 1680-1689, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1890202

RESUMEN

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Inmunidad Celular , Reacción en Cadena de la Polimerasa , Linfocitos T
7.
Front Immunol ; 13: 845882, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1785345

RESUMEN

Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and naïve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In naïve HD patients, the cellular immune response measured by IL-2 and IFN-É£ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Inmunidad Humoral , Estudios Longitudinales , ARN Mensajero/genética , Diálisis Renal , SARS-CoV-2 , Vacunación/métodos
8.
Cell Rep ; 36(8): 109570, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1356159

RESUMEN

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Asunto(s)
COVID-19/prevención & control , Linfocitos T/inmunología , Vacunas Sintéticas/administración & dosificación , Anticuerpos Antivirales/sangre , Ligando de CD40/metabolismo , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/sangre , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Péptidos/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/citología , Linfocitos T/metabolismo , Vacunación , Vacunas Sintéticas/inmunología
9.
Front Immunol ; 12: 632478, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1150690

RESUMEN

Despite of the rapid development of the vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it will take several months to have enough doses and the proper infrastructure to vaccinate a good proportion of the world population. In this interim, the accessibility to the Bacille Calmette-Guerin (BCG) may mitigate the pandemic impact in some countries and the BCG vaccine offers significant advantages and flexibility in the way clinical vaccines are administered. BCG vaccination is a highly cost-effective intervention against tuberculosis (TB) and many low-and lower-middle-income countries would likely have the infrastructure, and health care personnel sufficiently familiar with the conventional TB vaccine to mount full-scale efforts to administer novel BCG-based vaccine for COVID-19. This suggests the potential for BCG to overcome future barriers to vaccine roll-out in the countries where health systems are fragile and where the effects of this new coronavirus could be catastrophic. Many studies have reported cross-protective effects of the BCG vaccine toward non-tuberculosis related diseases. Mechanistically, this cross-protective effect of the BCG vaccine can be explained, in part, by trained immunity, a recently discovered program of innate immune memory, which is characterized by non-permanent epigenetic reprogramming of macrophages that leads to increased inflammatory cytokine production and consequently potent immune responses. In this review, we summarize recent work highlighting the potential use of BCG for the treatment respiratory infectious diseases and ongoing SARS-CoV-2 clinical trials. In situations where no other specific prophylactic tools are available, the BCG vaccine could be used as a potential adjuvant, to decrease sickness of SARS-CoV-2 infection and/or to mitigate the effects of concurrent respiratory infections.


Asunto(s)
Vacuna BCG/administración & dosificación , COVID-19/inmunología , Animales , Vacuna BCG/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Humanos , Inmunidad Innata , Pandemias , SARS-CoV-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA